a) \(\left(x^2-1\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x^2-1=0\\2x-6=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x^2=1\\2x=6\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
Vậy \(x\in\left\{1;3\right\}\)
b) \(2x+3x-x-24=16\)
\(\Rightarrow2x+3x-x=16+24\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=40:4=10\)
Vậy x = 10
c) \(\left(x^2+1\right)\left(x-5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x^2+1=0\\x-5=0\\x-1=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x^2=-1\\x=0+5\\x=0+1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\in\phi\\x=5\\x=1\end{array}\right.\)
Vậy \(x\in\left\{1;5\right\}\)
a) \(\left(x^2-1\right).\left(2x-6\right)=0\)
\(\Rightarrow\left(x^2-1\right).2\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-1\right).\left(x-3\right)=0\)
\(\Rightarrow x^2-1=0\) hoặc \(x-3=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
+) \(x-3=0\Rightarrow x=3\)
Vậy \(x\in\left\{1;-1;3\right\}\)
b) \(2x+3x-x-24=14\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=10\)
Vậy x = 10
c) \(\left(x^2+1\right).\left(x-5\right)\left(x-1\right)=0\)
\(\Rightarrow x^2+1=0\) hoặc \(x-5=0\) hoặc \(x-1=0\)
+) \(x^2+1=0\Rightarrow x^2=-1\) ( vô lí )
+) \(x-5=0\Rightarrow x=5\)
+) \(x-1=0\Rightarrow x=1\)
Vậy \(x\in\left\{5;1\right\}\)