Vì \(n^2+2n+2014\) là số chính phương
\(Đặt:n^2+2n+2014=k^2\left(k\in N\right)\)
\(\Leftrightarrow n^2+2n+1+2013=k^2\)
\(\Leftrightarrow2013=k^2-\left(n+1\right)^2=\left(k-n-1\right)\left(k+n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+n+1=2013\\k-n-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k=2012-n\\2012-n-n-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=1005\\n=1007\end{matrix}\right.\)
Vậy ...............................