\(12n^2-5n-25\)
\(=12n^2-20n+15n-25\)
\(=\left(3n-5\right)\left(4n+5\right)\)
Do đó \(12n^2-5n-25\) là số nguyên tố
\(\Rightarrow\left[{}\begin{matrix}3n-5=1\\4n+5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\left(TM\right)\\n=-1\left(KTM\right)\end{matrix}\right.\)