Cho phương trình bậc hai : 2x2 - mx + m -2 = 0(m là tham số)
Lập phương trình bậc 2 có 2 nghiệm là y1;y2 biết y1 + y2 = x1 + x2 và y12 + y22 = 1
cho phương trình bậc 2:ax^2+bx+c=0 (a,b,c là số hữu tỉ và a khác 0).cho biết phương trình 1+√2 .tìm nghiệm phương trình
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
Cho phương trình bậc hai : x2 + 2m + m +6 = 0 (6).
a/ Tìm m để phương trình (6) có nghiệm x = -1. ? Tính nghiệm còn lại.
b/ Tìm m để phương trình (6) có nghiệm kép? Tính nghiệm kép đó.
c/ Gọi x1, x2 là 2 nghiệm của phương trình (6). Tìm m để A = x1 +x2 -x1.x2 đạt giá trị lớn nhất
Cho phương trình x2+ 2(m − 1)x − 6m − 7 = 0 (1) (m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1, x2là hai nghiệm của phương trình (1). Tìm các giá trị của m thỏa x1(x1+3/3x2)+x2(x2+3/2x1)=15
các bạn ai biết thì chỉ giúp mình với ạ
Cho phương trình x2 + 2mx – 1 = 0 ( m là tham số ) (2)
a/ Chứng minh phương trình(2) luôn có hai nghiệm phân biệt với mọi m
b/ Gọi x1, x2 là hai nghiệm của phương trình trên, tìm m để x12 + x22 – x1x2 = 7
Cho phương trình : x\(^2\) - 2mx + 2m - 7 = 0 (1) ( m là tham số )
a) Giải phương trình (1) khi m = 1
b) Tìm m để x = 3 là nghiệm của phương trình (1). Tính nghiệm còn lại.
c) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x\(_1\), x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_2\)\(^2\) = 13
d) Gọi x\(_1\),x\(_2\) là hai nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
x\(_1\)\(^2\) + x\(_2\)\(^2\) + x\(_1\)x\(_2\).
Giải giúp mình với ạ
Cho phương trình bậc hai sau, với tham số m : x2 - (m - 2)x + m - 3 = 0 (1). Tìm m để pt (1) có 2 nghiệm.
Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(x^2+px+q=0\). Hãy lập một phương trình bậc hai có hai nghiệm là \(x_1+x_2\) và \(x_1.x_2\)