\(P=\dfrac{9n+1}{3n+2}=\dfrac{9n+6-5}{3n+2}=3-\dfrac{5}{n+2}\)
Để \(P \in \mathbb{Z} \Rightarrow 3n+2 \in Ư(5) \Rightarrow 3n + 2 \in \left \{-5;-1;1;5 \right \}\)
$ 3n + 2 $ | $ n $ |
$ - 5 $ | $ -\frac{7}{3} $ (loại) |
$ - 1 $ | $ -1 $ (nhận) |
$ 1 $ | $ -\frac{1}{3} $ (loại) |
$ 5 $ | $ 1 $ (nhận) |
Vậy \(n\in\left\{-1;1\right\}\)
Để phân số \(P=\dfrac{9n+1}{3n+2}\in Z\) thì :
\(9n+1⋮3n+2\)
Mà \(3n+2⋮3n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}9n+1⋮3n+2\\9n+6⋮3n+2\end{matrix}\right.\)
\(\Leftrightarrow5⋮3n+2\)
\(\Leftrightarrow3n+2\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3n+2=1\\3n+2=5\\3n+2=-1\\3n+2=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-\dfrac{1}{3}\left(loại\right)\\n=1\left(tm\right)\\n=-1\left(tm\right)\\n=-\dfrac{7}{3}\left(loại\right)\end{matrix}\right.\)
Vậy ..