biểu diễn hình học tập nghiệm của bất phương trình x-2y>1
viết phương trình tổng quát của đường thẳng d đi qua điểm M(-2;3) và có vecto chỉ phương \(\overrightarrow{u}\)=(1;-3)
Cho 2 pt: f(x)=0 ; g(x)=0 ( f(x) và g(x) là các đa thức) có 2 tập nghiệm lần lượt là S1 và S2 . Biểu diễn theo S1 và S2 tập nghiệm các pt
a) f(x).g(x) =0
b) f(x)/g(x) =0
c) f(x) + |g(x)| =0
tập nghiệm của bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng \(\forall x\in\)[5;3] , Tham số a phải thỏa điều kiện gì?
Trong Oxy, cho A(2;0) và đường thẳng d có phương trình x - y + 2 = 0. Gọi M(x;y) là điểm trên đường thẳng d sao cho chu vi tam giác OAM nhỏ nhất. Khi đó x + y bằng bao nhiêu?
Cho phương trình \(\left\{{}\begin{matrix}2x+y=5\\2y-x=a+5\end{matrix}\right.\)
Tìm a để hệ phương trình có nghiệm ( x,y) sao cho tích xy lớn nhất
Cho (P): y=\(x^2-2x+3\).
a) Khảo sát và vẽ đồ thị hàm số trên.
b) Dựa vào đồ thị,biện luận số nghiệm của phương trình: \(x^2-2x-m=0\).
c)Viết phương trình đường thẳng d vuông góc với đường thẳng \(\Delta:y=2x+1\)và đi qua đỉnh của (P).
hệ bpt\(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1 , với giá trị của m là
Cho bât phương trình \(2\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+2m-9\). Tìm các giá trị của tham số m để bất phương trình nghiệm đứng với \(\forall\) x thuộc [-1;3]