Tìm nghiệm nguyên dương của phương trình : \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Tìm nghiệm nguyên dương của phương trình:
\(\sqrt{x+2\sqrt{3}=\sqrt{x}+\sqrt{y}}\)
Cho \(A=\sqrt{x}.\left(1-\sqrt{x}\right)\) (0<x<1). Tìm giá trị của A khi x là nghiệm của phương trình: \(x-3\sqrt{x}+2=0\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
Tim m để phương trình sau có 2 nghiệm phân biệt đều nguyên: \(x^2-\left(2\sqrt{m}+1\right)x+\sqrt{m}+4=0\)
Tìm nghiệm nguyên dương của pt \(\sqrt{x}+\sqrt{y}=\sqrt{50}\)
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)