Tìm nghiệm nguyên của phương trình a, \(x^2-y^2-x+3y=4\) b, \(2x^2+2y^2-2xy+x+y=10\)
Cho \(x^2-2xy+2y^2-2x+6y+13=0\) Tính N = \(\frac{3x^2y-1}{4xy}\)
Cho 3 số thực a,b,c đôi một khác nhau thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\) Chứng minh \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Tìm số tự nhiên a để \(a+1;4a^2+8a+15;6a^2+12a+7\) đồng thời là số nguyên tố