Đặt \(A=\frac{n^2+2n+2}{n+3}\)
\(A=\frac{n^2+3n-n-3+5}{n+3}=\frac{n.\left(n+3\right)-\left(n+3\right)+5}{n+3}=\frac{\left(n+3\right).\left(n-1\right)+5}{n+3}\)
\(=\frac{\left(n+3\right).\left(n-1\right)}{n+3}+\frac{5}{n+3}=n-1+\frac{5}{n+3}\)
Để A nguyên thì \(\frac{5}{n+3}\) nguyên
=> \(5⋮n+3\)
=> \(n+3\inƯ\left(5\right)\)
=> \(n+3\in\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-2;-4;2;-8\right\}\)
Vậy \(n\in\left\{-2;-4;2;-8\right\}\) thỏa mãn đề bài