Sửa đề: Tìm max của A = xy biết 3x + y = 1
Ta có:
3x + y = 1
\(\Rightarrow y=1-3x\)
\(\Rightarrow\) \(A=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\dfrac{x}{3}\right)\)
\(=-3\left(x^2-2.x.\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left[\left(x-\dfrac{1}{6}\right)^2-\dfrac{1}{36}\right]\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\)
Do \(\left(x-\dfrac{1}{6}\right)^2\ge0\)
\(\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2\le0\)
\(\Rightarrow-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
\(\Rightarrow A\) đạt giá trị lớn nhất là \(\dfrac{1}{12}\) khi \(x=\dfrac{1}{6}\)