Lời giải:
Để hàm số đã cho xác định trên \((-1;0)\) thì :
\(x-m\neq 0, \forall x\in (-1;0)\)
\(\Leftrightarrow m\neq x, \forall (-1;0)\)
\(\Leftrightarrow m\not\in (-1; 0)\)
\(\Rightarrow m\in (\infty; -1]\cup [0; +\infty)\)
Lời giải:
Để hàm số đã cho xác định trên \((-1;0)\) thì :
\(x-m\neq 0, \forall x\in (-1;0)\)
\(\Leftrightarrow m\neq x, \forall (-1;0)\)
\(\Leftrightarrow m\not\in (-1; 0)\)
\(\Rightarrow m\in (\infty; -1]\cup [0; +\infty)\)
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
Khảo sát và vẽ đồ thị hàm số khi m = 2.Tìm m để đồ thị hàm số (dm) đi qua điểm A(4, -1).Tìm m để hàm số nghịch biến trên tập xác định.Tìm điểm cố định của đồ thị hàm số (dm) đi qua.\(y=\dfrac{7}{\sqrt{ }x-m+4}+\sqrt{-x+3m-3}\)
Tìm m để hàm số xác định trên (1;3]
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Cho hàm số \(y=x^2-\left(m-\sqrt{m^2-16}\right)x+2m+2\sqrt{m^2-16}\) . Gọi GTLN , GTNN của hàm số trên [2:3] lần lượt là \(y_1,y_2\) . Số giá trị của tham số m để \(y_1-y_2=3\) là bao nhiêu
Với giá trị nào của m thì hàm số sau nghịch biến trên tập xác định :
a, y = (m-2)x + 5
b, y = (m+1)x+m-2
Giúp với, mình cần gấp
Tìm m để hàm số : y=\(\dfrac{x+1}{3x^2-2x+m}\) có tập xác định là .
a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]