Hàm số có tập xác định là R khi và chỉ khi
\(3x^2-2x+m\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=1-3m< 0\)
\(\Leftrightarrow3m>1\)
\(\Leftrightarrow m>\dfrac{1}{3}\)
Hàm số có tập xác định là R khi và chỉ khi
\(3x^2-2x+m\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=1-3m< 0\)
\(\Leftrightarrow3m>1\)
\(\Leftrightarrow m>\dfrac{1}{3}\)
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Tìm tập xác định của hàm số a) y = x ^ 4 + 3x ^ 2 + x - 1 . c) y = (2x - 1)/((2x + 1)(x - 3)) b) y = (3x - 1)/(- 2x + 2)
Định m để TXĐ của các hàm số sau là R
a| \(y=\dfrac{x+1}{x^2-m+6}\)
b| \(y=\dfrac{2x+1}{mx^2+4}\)
ĐỊnh a để hàm số sau xác định với mọi x > 2
\(y=\sqrt{2x-3a+4}+\dfrac{x-a}{x+a-1}\)
Xác định a để tập xác định của hàm số \(y=\sqrt{2x+a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1
Cho hàm số: \(y=x^2-3x-4\) có đồ thị là (P).
a) Lập bảng biến thiên và vẽ (P).
b) Tìm m để phương trình \(\left|x^2-3x-4\right|=2m-1\) có bốn nghiệm phân biệt.
c) Tìm m để phương trình \(x^2-3\left|x\right|-4=m\) có 3 nghiệm.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
bài 1 tìm tập xác định của các hàm số
a) y= \(\dfrac{4x^2+1}{x^3-x}\)
b) y= \(\dfrac{5\sqrt{x}}{\left|x\right|-1}\)
c) y = \(\dfrac{2x-1}{\sqrt[3]{x^2-1}}\)
giải giúp mk pt này với ạ, có lời giải nx mk gần gấp ak mong m.n giúp THANKS
Tìm m để đồ thị hàm số y = \(x^2\) + 2mx + 2m cắt đường thẳng y = 2x + 3 tại hai điểm phân biệt có hoành độ nhỏ hơn 2.
A. m > 3 B. m > \(\dfrac{1}{2}\) C. m > \(\dfrac{1}{2}\) , m ≠ 2 D. m > \(-\dfrac{1}{2}\) , m ≠ 2
\(y=\dfrac{7}{\sqrt{ }x-m+4}+\sqrt{-x+3m-3}\)
Tìm m để hàm số xác định trên (1;3]