Cho biểu thức
\(F\left(x\right)=sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{27\pi}{2}-x\right)+sin\left(3\pi+x\right)-cos\left(7\pi-x\right)\)
a) Rút gọn F(x)
b) Trong hệ trục tọa độ Oxy gắn với đường tròn lượng giác, hãy nêu cách tìm số đo của góc x để F(x)=-1
Chứng minh rằng: (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x, \(\forall x\in R\)
Cho \(sin\left(x-y\right)=\frac{1}{2}\). Chứng minh: \(1-\sin^2x-\sin^2y+2\sin x.\sin y.\cos\left(x-y\right)=\frac{3}{4}\)
Câu 1: Chứng minh
\(\cos5x.\cos3x+\sin7x.\sin x=\cos2x.\cos4x\)
\(\frac{1-2\sin^22x}{1-\sin4x}=\frac{1+\tan2x}{1-\tan2x}\)
Câu 2:Rút gọn biểu thức
\(2\cos x-3\cos\left(\pi-x\right)+5\sin\left(\frac{7\pi}{x}-x\right)+cot\left(\frac{3\pi}{2}-x\right)\)
cho x+y+z+t=2\(\Pi\)
CMR \(\cos^2x+\cos^2y-\cos^2z-\cos^2t=-2\sin\left(x+y\right)\sin\left(y+z\right)\cos\left(x+z\right)\)
Rút gọn biểu thức \(A=cos\left(x-7\pi\right)-sin\left(x-\frac{5\pi}{2}\right)+tan^2\left(\frac{3\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+x\right)}\) với sinx\(\ne\)0
Để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng \(\forall x\in\left[-5;3\right]\) tham số a phải thỏa mãn đk?
Chứng minh đẳng thức
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)=cosx\)
Tìm m để bất phương trình sau đúng \(\forall x\in R\): \(\left(m+1\right)x^2-2\left(m-1\right)x+3m+6\ge0\)