ĐK: \(-5\le x\le3\)
\(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\)
\(\Leftrightarrow a\ge-x^2-2x+15+\sqrt{-x^2-2x+15}-15\left(1\right)\)
Đặt \(\sqrt{-x^2-2x+15}=t\left(0\le t\le4\right)\)
\(\left(1\right)\Leftrightarrow a\ge f\left(t\right)=t^2+t-15\)
Yêu cầu bài toán thỏa mãn khi
\(a\ge maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right)\right\}=f\left(4\right)=5\)
Vậy \(a\ge5\)