tìm m để phương trình :\(mx^2-2\left(m+1\right)x+2=0\left(1\right)\) có 2 nghiệm phân biệt x1 ,x2. khi đó hãy lập phương trình có các nghiệm như sau:
a) - 3x1 và - 2x2
b) x1 + x2 và x1.x2
Tìm m để phương trình x2 -mx +2m -4 =0 có hai nghiệm phân biệt x1; x2 thỏa mãn : x2 + mx2 = 12
Cho phương trình : \(x^2-\left(m+2\right)x-m-3=0\) (1)
a, Giải phương trình khi m = -1
b, Tìm giá trị của m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2>1\)
Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\left(1\right)\)
a) Chứng minh \(\left(1\right)\) luôn có nghiệm với mọi m.
b) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm trái dấu.
c) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm sao cho nghiệm này gấp đôi nghiệm kia.
Câu 1: Xác định m và n để phương trình (ần x): x2 + mx + n = 0 có hai nghiệm là m và n.
Câu 2: Chứng tỏ phương trình bậc hai (ần x): x2 + mx = m2+ m + 1 luôn có hai nghiệm trái dấu mọi m.
Câu 3: Tìm k để phương trình bậc hai (ẩn x): x2 – (k + 2)x + k – 1 = 0 có hai nghiệm đối nhau.
Câu 4: \(\sqrt{2x-2+2\sqrt{2x-3}}\) +\(\sqrt{2x+13+8\sqrt{2x-3}}\) =7 giải phương trình trên.
Câu 5: Chứng minh rằng nếu a + b ≥ 2 thì ít nhất một trong hai phương trình sau có nghiệm:
x2 + 2ax + b = 0 ; x2 + 2bx + a = 0 .
Câu 6: Cho ba phương trình: ax2 + 2bx + c = 0; bx2 + 2cx + a = 0; cx2 + 2ax + b = 0 ( a, b, c ≠0 ).
Chứng minh rằng ít nhất một trong ba phương trình trên phải có nghiệm.
Câu 7: Cho (x; y) là nghiệm của phương trình x2 + 3y2+ 2xy – 10x – 14y + 18 = 0. Tìm GTLN và GTNN của biểu thức S = x + y.
Câu 8: Cho phương trình bậc hai x2 + ax + b = 0. Xác định a và b để phương trình có hai nghiệm là a và b.
Cho phương trình \(x^2-2\left(m+4\right)x+m^2-8=0\)
Tìm m để phương trình thỏa mãn \(x_1,x_2\) thỏa mãn:
\(A=x^2_1+x^2_2-x_1-x_2\) đạt giá trị nhỏ nhất.
\(B=x^2_1+x^2_2-x_1x_2\) đạt giá trị nhỏ nhất.
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
cho phương trình ẩn x2 - mx + m - 1 =0 ( m là tham số )
a. Chứng tỏ phương trình trên luôn có nghiệm với mọi m
b. Tìm m để phương trình có hai nghiệm x1 ; x2 thảo mãn điều kiện : x12x2 + x1x22 = 2