a.
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(m-1\right)\)
= \(m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\forall m\)
b. Áp dụng hệ thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=m\\x_1.x_2=\frac{c}{a}=m-1\end{matrix}\right.\)
Bài cho : \(x^1_2.x_2+x_1.x^2_2=2\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=2\)
\(\Leftrightarrow\left(m-1\right)m=2\)
\(\Leftrightarrow m^2-m-2=0\)
Ta có: \(a+b+c=1+\left(-1\right)+\left(-2\right)=0\)
Nên \(m_1=-1,m_2=2\) (T/m)