\(\Delta=\left\lbrack-2\left(m-5\right)\right\rbrack^2-4\cdot1\cdot\left(-2m+9\right)\)
\(=4\left(m^2-10m+25\right)-4\left(-2m+9\right)\)
\(=4m^2-40m+100+8m-36=4m^2-32m+64\)
\(=4\left(m^2-8m+16\right)=4\left(m-4\right)^2\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>\(4\left(m-4\right)^2>0\)
=>m-4<>0
=>m<>4
Theo Vi-et, ta có:
\(\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m-5\right)\\ x_1x_2=\frac{c}{a}=-2m+9\end{cases}\)
\(x_1^2+x_2\cdot2\left(m-5\right)=4m^2\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=4m^2\)
=>\(\left(x_1^2+x_2^2\right)+x_1x_2=4m^2\)
=>\(\left(x_1+x_2\right)^2-x_1x_2=4m^2\)
=>\(\left(2m-10\right)^2-\left(-2m+9\right)=4m^2\)
=>\(4m^2-40m+100+2m-9=4m^2\)
=>-38m+91=0
=>-38m=-91
=>\(m=\frac{91}{38}\) (nhận)