ta có \(\left(1+1\right)^{2n+1}=C_{2n+1}^0+C^1_{2n+1}+C^2_{2n+1}+...+C^{2n+1}_{2n+1}\)
\(-\left(1-1\right)^{2n+1}=-\left(C_{2n+1}^0-C^1_{2n+1}+C^2_{2n+1}-...-C^{2n+1}_{2n+1}\right)\)
\(\left(1+1\right)^{2n+1}-\left(1-1\right)^{2n+1}=C_{2n+1}^0+C^1_{2n+1}+C^2_{2n+1}+...+C^{2n+1}_{2n+1}-C_{2n+1}^0+C_{2n+1}^1-C_{2n+1}^2+....+C_{2n+1}^{2n+1}\)
\(2^{2n+1}=2C_{2n+1}^1+2C_{2n+1}^3+2C_{2n+1}^5+...+C_{2n+1}^{2n+1}=2.1024=2048\)
\(\Rightarrow n=5\)
\(\left(2-3x\right)^{10}\)
SHTQ \(C_{10}^k.2^{10-k}.\left(-3x\right)^k=C_{10}^k.2^{10-k}.-3^k.x^k\)
\(x^7\Rightarrow k=7\)
hệ số cần tìm \(C_{10}^7.2^3.\left(-3\right)^7=-2099520\)