Bài 3: Nhị thức Niu-tơn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trùm Trường

Tìm hệ số của x10 trong khai triển (2+3x)n biết n thõa : \(C_{2n+1}^1+C_{2n+1}^2+..........+C^{2n}_{2n+1}=2^{10}-1\)

Nguyễn Việt Lâm
10 tháng 4 2020 lúc 17:33

Xét khai triển

\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+...+C_{2n+1}^{2n}x^{2n}+C_{2n+1}^{2n+1}x^{2n+1}\)

Cho \(x=1\) ta được:

\(2^{2n+1}=C^0_{2n+1}+C_{2n+1}^1+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\)

\(\Leftrightarrow2^{2n+1}=2+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)

\(\Leftrightarrow2^{2n+1}-2=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)

\(\Leftrightarrow2^{10}-1=2^{2n+1}-2\Rightarrow2^{2n+1}=2^{10}+1\)

Không tồn tại n thỏa mãn yêu cầu bài toán (bạn xem lại đề bài)


Các câu hỏi tương tự
Tâm Cao
Xem chi tiết
lu nguyễn
Xem chi tiết
Pham An
Xem chi tiết
Hải Títt
Xem chi tiết
Trương Thu Huyền
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Mai Quynhf Trần
Xem chi tiết
Slice Peace
Xem chi tiết
Hải Títt
Xem chi tiết