Giải:
\(P=x^2+2y^2+2xy-6x-8y+2018\)
\(\Leftrightarrow P=\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2008\)
\(\Leftrightarrow P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)
Vì \(\left\{{}\begin{matrix}\left(x+y-3\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall y\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008;\forall x,y\)
Hay \(P\ge2008;\forall x,y\)
Vậy ...
\(P=x^2+2y^2+2xy-6x-8y+2018\)
<=> \(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)
<=> P=(x+y)2-6(x+y) +9 +(y-1)2 +2008
<=> P=(x+y-3)2+(y-1)2+2008
=> Min P= 2008 dấu = xảy ra khi y=1;x=2