a)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right).3\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)
a/ chtt
b/ \(P=x^2+2y^2+2xy-6x-8y+2028\)
\(=\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2018\)
\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2018\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy....