\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=\dfrac{x^2}{x}+\dfrac{25x}{x}+\dfrac{144}{x}=x+25+\dfrac{144}{x}\)Vì \(x>0;\dfrac{144}{x}>0\Rightarrow x+\dfrac{144}{x}>0\)
Áp dụng bất đẳng thức AM - GM \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{x.\dfrac{144}{x}}=\sqrt{144}=12\Rightarrow x+\dfrac{144}{x}\ge12.2=24\)Ta có:
\(A=x+25+\dfrac{144}{x}\ge24+25=49\)
Vậy : \(Min_A=49\)
Đẳng thức xảy ra khi và chỉ khi :
\(x=\dfrac{144}{x}\Rightarrow x^2=144\Rightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\)
Vì \(x>0\Rightarrow x=12\)