Lời giải:
Ta có: \(A=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+4}{c}\)
\(\Leftrightarrow A=1+\frac{1}{a}+1+\frac{1}{b}+1+\frac{4}{c}=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)(a+b+c)\geq (1+1+2)^2\)
\(\Leftrightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\geq \frac{4^2}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)
Do đó: \(A\geq 3+\frac{8}{3}=\frac{17}{3}\) hay \(A_{\min}=\frac{17}{3}\)
Dấu bằng xảy ra khi \((a,b,c)=(\frac{3}{2}; \frac{3}{2}; 3)\)