☘ Đặt \(\dfrac{a}{1+b}=x\text{ và }\dfrac{b}{1+c}=y\text{ và }\dfrac{c}{1+a}=y\)
\(\Rightarrow x+y+z=1\)
☘ Ta có:
\(P=\left(\dfrac{1}{x}-1\right)\left(\dfrac{1}{y}-1\right)\left(\dfrac{1}{z}-1\right)\)
\(=\left(\dfrac{x+y+z}{x}-1\right)\left(\dfrac{x+y+z}{y}-1\right)\left(\dfrac{x+y+z}{z}-1\right)\)
\(=\dfrac{\left(y+z\right)\left(x+z\right)\left(x+y\right)}{xyz}\)
☘ Áp dụng bất đẳng thức AM - GM
\(\Rightarrow P\ge\dfrac{8xyz}{xyz}=8\)
☘ Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)