1. Tính gt của bt: \(x^2+y^2\) biết rằng: \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
2. Tính GTNN và GTLN của: \(A=\sqrt{1-x}+\sqrt{1+x}\)
Tìm GTNN, GTLN của \(P=\dfrac{\sqrt{x}-1}{x+2}\)
Tìm GTNN, GTLN cuả \(P=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\)
Tìm GTLN, GTNN của \(P=\dfrac{x+4}{4\sqrt{x}}\)
Tìm GTLN, GTNN của \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}\) (x ≥ 0)
Tìm GTNN, GTLN của \(P=\dfrac{x-4}{\sqrt{x}+1}\)
Bài 1: Tìm GTNN và GTLN của biểu thức B=\(\frac{\sqrt{x}}{x+1}\)
Bài 2: Tìm GTNN,GTLN của M=\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
cho a,b,c≥0 và a+b+c=3. tìm GTLN và GTNN của biểu thức \(K=\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
cho x,y là các số tự nhiên thỏa mãn x+y=99
tìm gtln và gtnn của \(P=\sqrt{x+1}+\sqrt{y+1}\)