Lời giải:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\sqrt{y-2}\leq \frac{(y-2)+2}{2\sqrt{2}}=\frac{y}{2\sqrt{2}}\) \(\Rightarrow x\sqrt{y-2}\leq \frac{xy}{2\sqrt{2}}\)
\(\sqrt{x-3}\leq \frac{(x-3)+3}{2\sqrt{3}}=\frac{x}{2\sqrt{3}}\Rightarrow y\sqrt{x-3}\leq \frac{xy}{2\sqrt{3}}\)
Do đó:
\(M=\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\leq \frac{\frac{xy}{2\sqrt{2}}+\frac{xy}{2\sqrt{3}}}{xy}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)
Vậy \(M_{\max}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi \(x=6;y=4\)