Cho a,b,c là các số dương
CMR: \(6abc\le\dfrac{a^3b}{c}+\dfrac{b^3c}{a}+\dfrac{c^3a}{b}+\dfrac{a^3c}{b}+\dfrac{b^3a}{c}+\dfrac{c^3b}{a}\)
Cho a,b,c >0 và \(a+b+c=1\). Tính giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{a}{4-3a}+\dfrac{b}{4-3b}+\dfrac{c}{4-3c}\)
cho a, b, c >0. chứng minh:
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
Ch a, b, c là 3 số dương thỏa mãn: a+b+c=6. Tìm giá trị lớn nhất của biểu thức: \(A=\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\)
Cho ba số thực dương thỏa mãn a+b+c=1 . Tìm GTLN của biểu thức:
\(P=\dfrac{a}{9a^3+3b^2+c}+\dfrac{b}{9b^3+3c^2+a}+\dfrac{c}{9c^3+3a^2+b}+2018\left(ab+bc+ca\right)\)
Cho a, b, c > 0. Chứng minh rằng: \(M=\dfrac{5b^3-a^3}{ab+3b^2}+\dfrac{5c^3-b^3}{bc+3c^2}+\dfrac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Cho a, b,c dương. cmr: \(\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\ge\dfrac{1}{5}\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{3a^3+7b^3}{2a+3b}+\dfrac{3b^3+7c^3}{2b+3c}+\dfrac{3c^3+7a^3}{2c+3a}\ge3\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
Với a, b, c là những số thực dương, chứng minh rằng: \(\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\dfrac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\dfrac{a+b+c}{5}\)