Lời giải:
\(\lim\limits_{x\to-\infty}\left(\sqrt{4x^2-4x+1}-2x-3\right)=\lim\limits_{x\to-\infty}\left(\left|2x-1\right|-2x-3\right)\)
\(=\lim\limits_{x\to-\infty}\left(1-2x-2x-3\right)=\lim\limits_{x\to-\infty}\left(-2-4x\right)=\infty\)
Lời giải:
\(\lim\limits_{x\to-\infty}\left(\sqrt{4x^2-4x+1}-2x-3\right)=\lim\limits_{x\to-\infty}\left(\left|2x-1\right|-2x-3\right)\)
\(=\lim\limits_{x\to-\infty}\left(1-2x-2x-3\right)=\lim\limits_{x\to-\infty}\left(-2-4x\right)=\infty\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+2}-x\right)\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tùy theo giá trị của tham số m, tính giới hạn:
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-\sqrt{4x^2+2x+3}+mx\right)\)
tính giới hạn
\(\lim\limits_{x\rightarrow+\infty}\left(2x-5-\sqrt{4x^2-4x-1}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x\left(\sqrt{4x^2-2x}+\sqrt[3]{3x^2-8x^3}\right)}{5x-1}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\sqrt[3]{x^3+3x^2}-\sqrt{x^2-2x}\)
b) \(\lim\limits_{x\rightarrow+\infty}\sqrt[n]{\left(x+a_1\right)\left(x+a_2\right)...\left(x+a_n\right)}-x\)
tìm giới hạn \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}\)