Xet \(m\ne-3\)
\(=\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1}+\sqrt{4}+m\right)=x\left(3+m\right)\)
\(=\left[{}\begin{matrix}-\infty\left(m>-3\right)\\+\infty\left(m< -3\right)\end{matrix}\right.\)
Xet \(m=-3\)
\(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-x-2x-\sqrt{4x^2+2x+3}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+2x^2+1-x^3}{\sqrt[3]{\left(x^3+2x^2+1\right)^2}+x\sqrt[3]{x^3+2x^2+1}+x^2}-\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-4x^2-2x-3}{2x-\sqrt{4x^2+2x+3}}\)
\(=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)