\(H=2019-\left(\left|x-y\right|^{2018}+\left|2x+1\right|+\left|4x+2\right|\right)\)
+ \(\left\{{}\begin{matrix}\left|x-y\right|^{2018}\ge0\forall x,y\\\left|2x+1\right|\ge0\forall x\\\left|4x+2\right|\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left|x-y\right|^{2018}+\left|2x+1\right|+\left|4x+2\right|\ge0\forall x,y\)
\(\Rightarrow H\le2019\forall x,y\)
+ H = 2019 \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y\right|^{2018}=0\\\left|2x+1\right|=0\\\left|4x+2\right|=0\end{matrix}\right.\Leftrightarrow x=y=-\frac{1}{2}\)
Vậy Min H = 2019 \(\Leftrightarrow x=y=-\frac{1}{2}\)