\(B=\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\sqrt{\left(\frac{1}{2}-x\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}\)
\(B\ge\sqrt{\left(x+\frac{1}{2}+\frac{1}{2}-x\right)^2+\left(\sqrt{3}\right)^2}=2\)
\(B_{min}=2\) khi \(x+\frac{1}{2}=\frac{1}{2}-x\Leftrightarrow x=0\)