1)\(\frac{2x+1}{x^2-2x+1}=\frac{2x+1}{\left(x-1\right)^2}\)
\(\Rightarrow x-1\ne0\)
\(\Rightarrow x\ne1\)
2)\(3x-1+\frac{2x+1}{x^2-2x}=\frac{3x^3-7x^2+4x+1}{x^2-2x}=\frac{3x^3-7x^2+4x+1}{x\cdot\left(x-2\right)}\)
\(\Rightarrow\left[{}\begin{matrix}x\ne0\\x-2\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)