Bài 1. Giải các phương trình sau
1) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}-2x\)
2) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
3) \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
4) \(\frac{2x+3}{3}=\frac{5-4x}{2}\)
5) \(\frac{5x+3}{12}=\frac{1+2x}{9}\)
6) \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
7) \(\frac{3\left(x-3\right)}{4}+\frac{4x-10,5}{10}=\frac{3\left(x+1\right)}{5}+6\)
8) \(\frac{2\left(3x+1\right)+1}{4}-5=\frac{2 \left(3x-1\right)}{5}-\frac{3x+2}{10}\)
9) \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
10) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
Tìm tập xác định của phân thức:
a) \(\frac{5x-10}{1-2x}\)
b) \(\frac{3x+5}{12x+3}\)
c) \(\frac{x^2-1}{x^2+2x+1}\)
d) \(\frac{9-4y^2}{36y^2-25}\)
e) \(\frac{2}{x+y}\)
f) \(\frac{x^2+y^2}{\left(x-1\right)\left(y+2\right)}\)
Cho các phân thức:
A=\(\frac{2x+6}{\left(x+3\right)\left(x-2\right)}\) B=\(\frac{x^2-9}{x^2-6x+9}\) C=\(\frac{9x^2-16}{3x^2-4x}\) D=\(\frac{x^2+4x+4}{2x+4}\)
E=\(\frac{2x-x^2}{x^2-4}\) F=\(\frac{3x^2+6x+12}{x^3-8}\)
a, Với điều kiện nào của x thì giá trị của các phân thức trên xác định
b, Rút gọn các phân thức tren
c, Tìm x để giá trị của các phân thức trên bằng 0
Tìm điều kiện của x để phân thức sau xác định:
a)\(\dfrac{3x^2+6x+12}{x^3-8}\)
b)\(\dfrac{x^2+2x+5}{2x^2+5x+3}\)
c)\(\dfrac{5x+1}{x^2-4}\)
Bái 3. Thực hiện phép tính
A=\(\frac{4x^3}{x^4-16}-\frac{1}{x+2}+\frac{2x}{x^2+4}-\frac{1}{x-2}\)
B=\(\frac{1}{x-1}+\frac{2x+3}{\left(x+1\right)^2}-\frac{1}{\left(x+1\right)^2}-\frac{3x-2}{x^2-1}\)
C=\(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)...\left(1+\frac{1}{x+9}\right)\)
Giải phương trình \(\left(\frac{7}{x^2+x-12}-\frac{1}{x^2-3x+2}-\frac{1}{x^2-5x+6}-\frac{3}{x^2+5x+4}\right)=\frac{3x}{x^2-1}\)
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1. Phân tích : x2*(x2+9)+25
2. CM đẳng thức: \(\left[\left(x^3-8\right):\frac{x^2+2x+4}{x+2}-\frac{x^2-4}{x^2+2x+4}\cdot\frac{x^3-8}{x+2}\right]:\left(x-1\right)=\frac{4x-8}{x-1}\)
3. CM giá trị của biểu thức sau là hợp số với mọi số tự nhiên k :
\(S=\left(k+2\right)\cdot\left(k^2-2k+4\right)-\left(k+1\right)\left(k+2\right)+\left(k+1\right)\left(k+4\right)+k\)
4. Tìm x biết :
\(\frac{x^2-8x}{x-1}=x\)
Tìm điều kiện của x để phân thức sau xác định;
a)\(\dfrac{\dfrac{1}{x-4}}{2x+2}\)
b)\(\dfrac{x^3+2x}{4x^2-25}\)
c)\(\dfrac{2x^2+2x}{8x^3+27}\)
d)\(\dfrac{2x+1}{\left(2x+2\right)\left(4y^2-9\right)}\)