Tìm điều kiện của tham số m để \(2x-3\sqrt{x}+1\)≥m ,∀x ϵ [4;9]
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Tìm điều kiện tham số m để \(2x-3\sqrt{x}+1\ge m,\)∀x∈[4;9]
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
f(x)= \(x^2+2\left(m-1\right)x+m+5>0\forall x\in R\)
Tìm m để bất phương trình
Tìm m để bất phương trình \(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\) nghiệm đúng với mọi \(x\in\left[-2;4\right]\)
Tìm m để hệ bất phương trình vô nghiệm \(\left\{{}\begin{matrix}mx\le m-3\\\left(m+3\right)x\ge m-9\end{matrix}\right.\)
Tìm m để \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\) dùng \(\forall x\in\left(-5;3\right)\)
cho bất phương trình \(\sqrt{x-1}+\sqrt{5-x}+\sqrt{-x^2+6x-5}\ge m\left(1\right)\) Tìm giá trị lớn nhất của m để bất phương trình \(\left(2\right)\) nghiệm đúng với mọi \(x\in\left[1;5\right]\)