ĐK: \(-5\le x\le3\)
\(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\)
\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)
Đặt \(\sqrt{-x^2-2x+15}=t\left(0\le t\le4\right)\)
Bất phương trình đã cho tương đương:
\(\Leftrightarrow f\left(t\right)=t^2+t-15\le m\)
Yêu cầu bài toán thỏa mãn khi \(m\ge maxf\left(t\right)=f\left(4\right)=5\)
Vậy \(m\ge5\)