a, \(3\widehat{A}=4\widehat{B}\Leftrightarrow\dfrac{3\widehat{A}}{12}=\dfrac{4\widehat{B}}{12}\Rightarrow\dfrac{\widehat{A}}{4}=\dfrac{\widehat{B}}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{4}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{A}-\widehat{B}}{4-3}=\dfrac{20^0}{1}=20^0\)
+)\(\dfrac{\widehat{A}}{4}=20^0\Rightarrow\widehat{A}=20^0.4=80^0\)
+)\(\dfrac{\widehat{B}}{3}=20^0\Rightarrow\widehat{B}=20^0.3=60^0\)
Xét △ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ 80^0+60^0+\widehat{C}=180^0\\ \widehat{C}=180^0-80^0-60^0=40^0\)
Vậy \(\Delta ABC\) có \(\widehat{A}=80^0;\widehat{B}=60^0;\widehat{C}=40^0\)
a) Gọi số đo các góc lần lượt là x,y ( x,y > 0 )
Theo bài ra ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}\) và \(x-y=20^0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x-y}{4-3}=\dfrac{20^0}{1}=20^0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=20^0\Rightarrow x=80^0\\\dfrac{y}{3}=20^0\Rightarrow x=60^0\end{matrix}\right.\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
mà \(\widehat{A}=80^0;\widehat{B}=60^0\)
\(\Rightarrow80^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow140^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-140^0\)
\(\Rightarrow\widehat{C}=40^0\)
Vậy ........................