a) Ta có:
2y2 - 4y dương
<=> y(2y-4) dương
<=> y và 2y-4 cùng dấu
<=> \(\left[\begin{array}{nghiempt}y< 0\\2y-4< 0\Rightarrow2y< 4\Rightarrow y< 2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y>0\\2y-4>0\Rightarrow2y>4\Rightarrow y>2\end{array}\right.\)
Vậy y > 2 hoặc y < 2 thì thỏa mãn đề bài
b) 5(3y+1)(4y-3) > 0
<=> (3y+1)(4y-3) > 0
<=>\(\left[\begin{array}{nghiempt}3y+1>0;4y-3>0\\3y+1< 0;4y-3< 0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}3y>-1;4y>3\\3y< -1;4y< 3\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}y>-\frac{1}{3};y>\frac{3}{4}\\y< -\frac{1}{3};y< \frac{3}{4}\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}y>\frac{3}{4}\\y< -\frac{1}{3}\end{array}\right.\)
(Dấu ";" có nghĩa là chữ và nha)