Ta có (d1) : \(3x+2y=5\)
=> \(\left(d_1\right):y=\frac{5-3x}{2}\)
Ta có (d2) : \(2x-y=4\) ( I )
=> \(\left(d_2\right):y=2x-4\)
- Xét phương trình hoành độ giao điểm :\(\frac{5-3x}{2}=2x-4\)
=> \(5-3x=4x-8\)
=> \(x=\frac{13}{7}\)
- Thay \(x=\frac{13}{7}\) vào phương trình ( I ) ta được : \(\frac{26}{7}-y=4\)
=> \(y=-\frac{2}{7}\)
- Thay \(x=\frac{13}{7}\), \(y=-\frac{2}{7}\) vào phương trình ( d3 ) ta được :
\(\frac{13m}{7}+7.\left(-\frac{2}{7}\right)=11\)
=> \(\frac{13m}{7}=13\)
=> \(m=7\)
Vậy để 3 đường thẳng trên đồng quy tại 1 điểm thì m = 7 .