Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)
\(\Leftrightarrow a^2-5a-24=0\)
=>(a-8)(a+3)=0
=>a=8 hoặc a=-3
Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)
\(\Leftrightarrow a^2-5a-24=0\)
=>(a-8)(a+3)=0
=>a=8 hoặc a=-3
Bài 8 :
1 . Tìm giá trị lớn nhất của các biểu thức .
a. B = - ( x + 18/1273 ) - 183/124 .
b. C = 15/( x - 8)² + 4 .
2 . Tìm các giá trị của x để các biểu thức sau nhận giá trị dương .
a. A = x² + 6 .
b. B = ( 5 - x ) . ( x + 8 ) .
c. C = ( x - 1 ) . ( x - 2 ) / x - 3 .
tìm các giá trị nguyên của x để biểu thức B=1-2x/x+3 nhận giá trị nguyên
cho đa thức f(x)=\(x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\)\(\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\).chứng minh đa thức f(x) nhận giá trị nguyên với mọi giá trị x nguyên
Tính giá trị biểu thức :
a, N = \(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2025\)
tại x = 2016
b, Q = \(2017x^{2016}+2016x^{2015}+2015x^{2014}+...+3x^2+2x+1\)
tại x = ( -1 )
B1 Tính giá trị của biểu thức sau
P= 3xy ( x+y ) + 2x^3y + 2x^2y^2 + 5, với x+y=0
Q= 3x^2 + 2xy - 2y^2 tại x=1 ; x= (-1)
B2 Tìm nghiệm của đa thức x^2 - x
B3 Tìm bậc của đa thức
M= x^5 + y^6 + x^4y^4 + 1
N= 4x^4 + 2x^3 - x^4 - x^2 + 2x^2 - 3x^4 - x +5
P= x^2 + y^3
B4 Để đa thức ax+6 có nghiệm là x= ( -3 phần 2) thì giá trị của a bằng bao nhiêu ?
B5 Cho đa thức Q= ax^2y^2 - 2xy + 3xy - 2x^2y^2 + 5. Biết rằng đa thức có bậc là 4 và a là số nguyên tố nhỏ hơn 5 . Tìm giá trị của a
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
CHO A(x)=4x2+4x-3x2+1-x+3-x2
a, thu gọn đa thức
b, tính giá trị của A(x) tại x=2
c, tìm nghiệm cảu A(x)
Cho các đa thức: P(x)= 4x2+x-5 và Q(x)= 5x3-2x2+2x-1
a. Tính P(x) + Q(x)
b. Tìm đa thức H(x) thoả H(x)-P(x)= ax với a là hằng số
c. Xác định a để đa thức H(x) có nghiệm là 2
Tìm giá trị nhỏ nhất của biểu thức: A=\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)