\(ab-2a-2b=0\)
\(\Leftrightarrow ab-2a-2b+4=4\)
\(\Leftrightarrow a\left(b-2\right)-2\left(b-2\right)=4\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=4\)
Phương trình ước số cơ bản
\(ab-2a-2b=0\)
\(\Leftrightarrow ab-2a-2b+4=4\)
\(\Leftrightarrow a\left(b-2\right)-2\left(b-2\right)=4\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=4\)
Phương trình ước số cơ bản
Cho \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
Tìm \(a\in Z\) để \(P\in Z\)
Cho các số thực dương a, b thỏa mãn \(2a+3b=2019\)
Chứng minh rằng : \(\sqrt{ab+2a+2b+4}+\sqrt{\left(2a+2\right)b}\le1012\)
cho a,b,c>0 thỏa mãn a+b+c=1
Tìm max của A=\(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)
Với a, b là các số thực dương thỏa mãn ab+a+b=1. CMR: \(\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}\)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTNN :
\(P=\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ac}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
Cho a,b,c >0 thỏa mãn: ab+ bc+ca=1. Rút gọn biểu thức:
A= \(a\sqrt{\dfrac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\dfrac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\dfrac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}\)
Cho a,b,c >0 thỏa mãn ab+bc+ca=3abc
Tìm GTNN của \(Q=\frac{a^2}{c\cdot\left(c^2+a^2\right)}+\frac{b^2}{a\cdot\left(a^2+b^2\right)}+\frac{c^2}{b\cdot\left(b^2+c^2\right)}\)