Lời giải:
$g(x)=x^2+x-2=(x-1)(x+2)$
Để $f(x)$ chia hết cho $g(x)$ thì $f(x)$ chia hết cho $x-1$ và $x+2$
Áp dụng định lý Bê-du về phép chia đa thức, để $f(x)$ chia hết cho $x-1$ và $x+2$ thì:
$f(1)=f(-2)=0$
\(\Leftrightarrow \left\{\begin{matrix} a+b+6=0\\ -8a+4b-24=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-4\\ b=-2\end{matrix}\right.\)
Vậy........