a/ \(x=\dfrac{2a-4}{a-2}=\dfrac{2\left(a-2\right)}{a-2}=2\)
=> Giá trị của x luôn nguyên (=2) với mọi a ≠ 2
b/ \(x=\dfrac{3a+4}{a+6}=\dfrac{3a+18-14}{a+6}=\dfrac{3\left(a+6\right)}{a+6}-\dfrac{14}{a+6}=3-\dfrac{14}{a+6}\)
Để x ∈ Z thì \(\dfrac{14}{a+6}\in Z\)
<=> \(a+6\inƯ\left(14\right)\)
<=> \(a+6=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
<=> \(a=\left\{-20;-13;-8;-7;-5;-4;1;8\right\}\)
Vậy...................
c/ \(x=\dfrac{4a-2}{a+2}=\dfrac{4a+8-10}{a+2}=\dfrac{4a+8}{a+2}-\dfrac{10}{a+2}\)
\(=\dfrac{4\left(a+2\right)}{a+2}-\dfrac{10}{a+2}=4-\dfrac{10}{a+2}\)
Để x ∈ Z <=> \(4-\dfrac{10}{a+2}\in Z\Leftrightarrow\dfrac{10}{a+2}\in Z\)
\(\Leftrightarrow a+2\inƯ\left(10\right)\)
\(\Leftrightarrow a+2=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Leftrightarrow a=\left\{-12;-7;-4;-3;-1;0;3;8\right\}\)
Vậy......................