\(a,=\left(x^3+3x^2-x^2-3x+x+3\right):\left(x+3\right)\\ =\left(x+3\right)\left(x^2-x+1\right):\left(x+3\right)\\ =x^2-x+1\\ b,=\left(x^3+2x^2-x^2-2x+3x+6\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-x+3\right):\left(x+2\right)\\ =x^2-x+3\)
\(a,=\left(x^3+3x^2-x^2-3x+x+3\right):\left(x+3\right)\\ =\left(x+3\right)\left(x^2-x+1\right):\left(x+3\right)\\ =x^2-x+1\\ b,=\left(x^3+2x^2-x^2-2x+3x+6\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-x+3\right):\left(x+2\right)\\ =x^2-x+3\)
Tìm a để các phép chia sau là phép chia hết:
a)(2x^4-2x^3+x^2+x+a):(x-2)
b)(2x^3-3x^2+x+x):(x+2)
bài 1: Thực hiện phép chia
a, ( 6x2 y3 - 2x2 y + 6xy ) : 6xy
b, 4 ( x + y )3 : 2 ( x + y )
c, ( 8x3 + 27y3 ) : ( 2x + 3y )
d, ( 48 x4 y3 - 12x2y5 + 6x2y2 ) : ( 3x2y2 )
Thực hiện phép tính
a) \(\left(-6x^3+7x^2-5x+2\right):\left(-2x+1\right)\)
b) \(\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)\)
Bài 2 : [Đặt tính chia cột dọc ( làm ra vỏe chụp càng tốt ạ )] Thực hiện phép chia f(x) cho g(x) để tìm thương và dư :
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3;g(x)= 1+2x-4x
BT: Thực hiện tính
( 3xn-1 + 6x2n+2 ) : 2x1+n
BT: Tìm x
a, 3a3 ( x2 - 1)4 : 3a3 ( x2 - 1)3 = 15
b, x3(2x - 1)m+2 : x3 (2x -1)m-1 - 35 : 32 = 0
a) ( 2x^4-5x^2+x^3-3-3x):(x^2-3)
b)(2x^3+5x^2+3):(2x^2-x+1)
c) (2x+4y)^2 : (x+2y)-(9x^3-12x^2-3x):(-3x)-3(x^2+3)
Tìm n \(\left(n\in\mathbb{N}\right)\) để mỗi phép chia sau đây là phép chia hết
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
Tìm giá trị nhỏ nhất
A)x^2+4y^2-2x-14y+2025 B)(x-1) .(x+2).(x+3).(x+6)-2047. C)x^2-4x+2021. D)x^2 +y^2+xy-2x-4y+2014
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x