\(P=\frac{x+3y}{3x+y}.\frac{4x-2y}{x-y}-\frac{x+3y}{3x+y}.\frac{x-3y}{x-y}\)
\(=\frac{x+3y}{3x+y}\left(\frac{4x-2y}{x-y}-\frac{x-3y}{x-y}\right)\)
\(=\frac{x+3y}{3x+y}.\frac{3x+y}{x-y}=\frac{x+3y}{x-y}\)
\(P=\frac{x+3y}{3x+y}.\frac{4x-2y}{x-y}-\frac{x+3y}{3x+y}.\frac{x-3y}{x-y}\)
\(=\frac{x+3y}{3x+y}\left(\frac{4x-2y}{x-y}-\frac{x-3y}{x-y}\right)\)
\(=\frac{x+3y}{3x+y}.\frac{3x+y}{x-y}=\frac{x+3y}{x-y}\)
RÚt gọn : \(\frac{2x+y}{2x+2y}-\frac{x+2y}{x-y}+\frac{5}{x}-\frac{4x}{3x^2-3y^2}\)
Rút gọn :
a) 3x ( x - 4y ) - \(\frac{12}{5}y\)( y - 5x )
b) ( \(4x^{2\:}\)- 3y ) . 2y- ( \(3x^2\)- 4y ) . 3y
Rút gọn:
\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y}\right).\left(y+\frac{x^2}{x+y}\right)\)
Rút gọn: \(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)
giúp mình hai câu này với mình đang cần gấp ạ mai học rôi <3
1) thực hiện phép tính
a) \(\frac{x-x}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\)
c) ( rút gọn nha )
\(\frac{4x-1}{2x^2-2}\)
giúp mình với
giúp mình hai câu này với mình đang cần gấp ạ mai học rôi <3
1) thực hiện phép tính
a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\)
Giải hệ phương trình: \(\begin{cases}\frac{y^2\left(y^2-x\right)+\sqrt{y^2+2}}{-x^2-x+2}=\frac{1}{\sqrt{x+3}-x-1}\\3y^4+y^2-\left(2x+4\right)\sqrt{3x^2+x+1}=0\end{cases}\)
Cho \(x,y,z>0\) và \(x+y+z=3\)
\(C\text{/}m:\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Mấy bạn giúp tớ nhé. gần nộp rồi
Tính giá trị của biểu thức sau:
a. M = 2x(x - 3y) - 3y(x + 2) - 2(x^2 - 3y - 4xy) với x= \(\frac{-2}{3};y=\frac{3}{4}\)
b. N = x^4 - 17x^3 + 17x^2 - 17x + 20 với x= 16