\(=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
\(=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
thuc hien phep tinh:
a) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x}\)
thuc hien phep tinh:
a, 1\(\dfrac{1}{2}\).\(2\dfrac{1}{3}\)+1\(\dfrac{1}{3}\).\(\dfrac{1}{2}\)
b, \(\dfrac{1}{9}\).\(\dfrac{2}{145}\)-4\(\dfrac{1}{3}\).2\(\dfrac{2}{145}\)+\(\dfrac{2}{145}\)
thuc hien phep tinh:
a,\(1\dfrac{1}{2}\). \(2\dfrac{1}{3}\)+ \(1\dfrac{1}{3}\). \(\dfrac{1}{2}\)
b,\(\dfrac{1}{9}\).\(\dfrac{2}{145}\)\(-4\dfrac{1}{3}\). \(\dfrac{2}{145}\)+\(\dfrac{2}{145}\)
thuc hien phep tinh:
(x+2)(1+x-x^2+x^3-x^4)-(1-x)(1+x+x^2+x^3+x^4)
thuc hien phep tinh:
(x+2)(1+x-x^2+x^3-x^4)-(1-x)(1+x+x^2+x^3+x^4)
thuc hien phep tinh :
a, (x+1)(1+x-x^2+x^3-x^4)-(x-1)(1+x+x^2+x^3+x^4)
b, (2b^2-2-5b+6b^3)(3+3b^2-b)
Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x+2}+\dfrac{x^2}{x^2-5x+6}\right):\dfrac{x^4+x^2+1}{x^2-4x+3}\)
Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x+2}+\dfrac{x^2}{x^2-5x+6}\right):\dfrac{x^4+x^2+1}{x^2-4x+3}\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)