cho lăng trụ tam giác ABC.A'B'C' có đáy A'B'C' là tam giác vuông cân tại B', A'B' =2a. Hình chiếu vuông góc của B lên mặt phẳng A'B'C' là trung điểm H của A'B' , góc giữa BC' và mặt phẳng A'B'C' là 45 độ. Tính thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C' đến mặt phẳng A'BC
Cho lăng trụ ABC.A'B'C' có đáy là tam tác đều cạnh a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của cạnh AB, góc giữa đường thẳng A'C và mặt phẳng đáy bằng 60 độ. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách từ điểm B đến mặt phẳn (ACC'A')
Cho lăng trụ đều ABC.A'B'C' có AB = a và đường thẳng A'B tạo với đáy một góc bằng 60 độ. Gọi M và N lần lượt là trung điểm của các cạnh AC và B'C'. Tính theo a thể tích củ khối lăng trụ ABC.A'B'C' và độ dài của MN
Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông, AB=BC=a, cạnh bên \(AA'=a\sqrt{2}\). Gọi M là trung điểm cạnh BC. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách giữa 2 đường thẳng AM, B'C
Cho hình lăng trụ ABC.A'B'C', đều có cạnh bằng a, AA' = a và đỉnh cách đều A, B, C. Gọi lần lượt là trung điểm của cạnh BC và A'B. Tính theo a thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C đến mặt phẳng (AMN).
Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân với AB=AC=a, góc BAC=120o. Mặt phẳng (AB'C') tạo với đáy một góc 60o. Tính thể tích V của khối lăng trụ
cho hình lăng trụ ABC.A'B'C' có tam giác ABC vuông cân tại B, AC= 2. Hình chiếu của A' trên (ABC) trùng với trung điểm của AC, góc tạo bởi A'B và (ABC) bằng 45 độ. Chứng minh A'B vuông góc B'C
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)