Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Hà

Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông, AB=BC=a, cạnh bên \(AA'=a\sqrt{2}\). Gọi M là trung điểm cạnh BC. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách giữa 2 đường thẳng AM, B'C

Nguyễn Hòa Bình
2 tháng 4 2016 lúc 14:42

A B C B' C' A' E M

Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B

Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)

Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)

Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)

Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :

\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)

\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)

Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)


Các câu hỏi tương tự
Trương Văn Châu
Xem chi tiết
Nguyễn Hồng Phương Khôi
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Loan Ngô
Xem chi tiết
Hường Nguyễn
Xem chi tiết
Thu Hiền
Xem chi tiết
Phạm Minh Thu
Xem chi tiết