Cho lăng trụ tam giác ABC. A'B'C' có đáy tam giac vuông cân tại A AB =a AC = a√3 . Hình chiếu vuông góc của A' trên mặt phẳng ABC trùng với trung điểm H của BC. Góc giữa cạnh bên và mặt đáy bằng 45 độ . Tình thể tích khối lang trụ ABC. A'B'C'
Cho lăng trụ ABC.A'B'C' có đáy là tam tác đều cạnh a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của cạnh AB, góc giữa đường thẳng A'C và mặt phẳng đáy bằng 60 độ. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách từ điểm B đến mặt phẳn (ACC'A')
Cho hình lăng trụ ABC.A'B'C', đều có cạnh bằng a, AA' = a và đỉnh cách đều A, B, C. Gọi lần lượt là trung điểm của cạnh BC và A'B. Tính theo a thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C đến mặt phẳng (AMN).
Cho lăng trụ tam giác ABC.A'B'C' có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A. \(AB=a;AC=a\sqrt{3}\) và hình chiếu vuông góc của đỉnh A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính theo a thể tích của khối chóp A'ABC và tính cosin của góc giữa 2 đường thẳng AA', B'C'
cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AB=a. hình chiếu vuông góc của A' lên mp (ABC) trùng với điểm H là trung điểm của AB. biết diện tích mặt bên ABA'B' = 3a^2 . tính khoàng cách từ B đến mp (ACB')
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=a, góc giữa 2 mặt phẳng (A'BC) và (ABC) bằng 60 độ. Gọi G là trọng tâm của tam giác A'BC.
Tính thể tích của khối lăng trụ đã cho và bán kính mặt cầu ngoại tiếp tứ diện GABC theo a
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)