\(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{\left(2a+9\right)+\left(5a+17\right)-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=3+\frac{14}{a+3}\)Để \(A=3-\frac{14}{a+3}\) là số nguyên <=> \(\frac{14}{a+3}\) là số nguyên
=> a + 3 thuộc ước nguyên dương của 14 ( vì a dương => a + 3 dương) => Ư(14) = { 1; 2; 7; 14 }
Ta có : a + 3 = 1 => a = - 2 (loại)
a + 3 = 2 => a = - 1 (loại)
a + 3 = 7 => a = 4 (TM)
a + 3 = 14 => a = 11 (TM)
Vậy a = { 4; 11 }
Ta có: \(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}=4+\frac{14}{a+3}\)
Vì 4 là số nguyên nên để A nhận giá trị nguyên khi \(\frac{14}{a+3}\) nhận giá trị nguyên
\(\Rightarrow14⋮a+3\)
\(\Rightarrow a+3\inƯ\left(14\right)\)
\(\Rightarrow a+3\in\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Ta có bảng sau
\(a+3\) | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
\(a\) | -2 | -4 | -1 | -5 | 4 | -10 | 11 | -17 |
Vậy \(a\in\left\{-2;-4;-1;-5;4;-10;11;-17\right\}\)