\(\sqrt{x^2+15}< 3x-2+\sqrt{2x^2+8}\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
giải phương trình
\(\sqrt[3]{15-x^3+3x^2-3x}=2\sqrt{x^2-4x+2}+3-x\)
h
Câu 1: Tìm m để \(mx^2-2mx-1\le0,\forall x\in\left[0;3\right]\)
Câu 2: Giải bất phương trình:
a) \(2\left(x-1\right)\sqrt{x^2+2x-1}\le x^2-2x-1\)
b) \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)
c)\(\frac{x^2-x}{\sqrt{x^4+3x^2}-2x}\le1\)
d)\(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
e) \(\sqrt{x+1}-\sqrt{3x^2-4x-15}+\sqrt{x-3}>0\)
Tìm tập nghiệm của bất phương trình:\(2\left(x-4\right)\sqrt{2x+1}\ge x\sqrt{x^2+1}+x^3+x^2-3x-8\)
Bài 1 : giải các phương trình sau
1 , \(\left(x^2-6x\right)\sqrt{17-x^2}=x^2-6x\)
2 , \(\left(x^2+5x+4\right)\sqrt{x+3}=0\)
3, \(\sqrt{3x}+\sqrt{2x-2}=\sqrt{1-x}+2\)
4, \(\left(x^2-4x+3\right)\sqrt{x-2}=0\)
5 , \(\sqrt{x^2+3x-2}=\sqrt{1+x}\)
6 , \(\left(\sqrt{x-4}-1\right)\left(x^2-7x+6\right)=0\)
7, \(\sqrt{2x^2-8x+4}=x-2\)
8 , \(\sqrt{3x+7}-\sqrt{x+1}=2\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
Giải bất phương trình:
\(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}>\sqrt{x^2-2}+\sqrt{3x^2-5x-1}\)
giải phương trình :
a ) \(\sqrt{2x+8}=x+4+\sqrt{x+4}\) ( Đặt ẩn phụ )
b ) \(\sqrt{x^2+5x+6}=x+2+\sqrt{x^2+3x+4}\)